

PRODUCED WATER MIDDLE EAST 2019

23 - 24 October, 2019

Sheraton Oman Hotel | Muscat, Oman

www.producedwatermiddleeast.com

Produced Water and Waste Streams Utilization

Husam AL Sulaimani PDO

Overview of PDO

- Petroleum Development Oman (PDO) is the leading exploration and production company in the Sultanate of Oman
- PDO delivers the majority of the country's crude oil production and natural gas supply
- Production of produced water is increasing along with oil production
 - ✓ Current ratio is 9 bbl Produced Water (PW) / bbl Oil
- PDO has different configurations of PW treatments to meet specifications for WI/DWD/other re-uses

Facility Overview

Design Case Operation and Problem Statement 🝥 🔾

Previous Case:

• Low Pressure Steam Condensate was recycled to Raw Water tank.

Modification:

The HRSG tubes failure issue recommended that caustic injection is to be replaced by neutralizing Amine chemical.

Problems Experienced:

- Process upsets such as high SDI and biomass formation (Amines are nutrients for bacteria).
- Increased frequency of MMF backwash cycle leading to more water consumption.
- Increased frequency of cartridge filters replacement.
- Increased frequency of RO membranes Cleaning In Place.

Post Problem Operation

To mitigate the biomass formation issues, LP condensate was diverted to blowdown for disposal, (waste of 4000 m3/d of LP condensate ~ 6700m3/d of aquifer water).

- A study was conducted and optimum solution proposed to route LP condensate to BFW
 - With water treatment.
 - Without water treatment.

Solution

	Unit	HRSG BFW specification	LP Condensate water analysis	Permeate to BFW tank analysis (current analysis)
рН		9 - 10	9.4	8.58
Conductivity	<u>μS/cm</u>	750	42	18.45
Silica	mg/l	0.7	0.042	0.01
Total Iron	mg/l	<0.1	0.001	-
Total Chloride	mg/l	<10	3.8	2.7
Total Hardness	mg/l	<1	0.32	0.18

- LP condensate specification is well below the HRSG specification.
- Typical LP condensate concentration is 3-5 times the concentration of the boiler feed water.
- Its acceptable to re-route the LP condensate to the BFW tank without treatment.
- Optimum LP condensate recycle rate calculated is 75% to avoid HRSG integrity issues.
- Governing element is the chloride.

Conclusion

- Proposed and conducted a 6 months trail.
- Trail results were positive (water within the specs) for the selected duration.
- Concluded total success, and implemented continuously.
- PDO always striving to make effective use of the water and protect the aquifers water for the future generation.

Re-use of 4,000 m3/d reflects:
✓ Additional 4,000 ton/d of steam generation
✓ 8,000 m3/d of Aquifer savings

✓ Water for 16,000 people

Thank you Questions?

Back up

00

a muy

Chloride (mg/l) in	LP condensate	LP condensate	BFW tank
RO permeate water	Recycle	Blowdown to	Chloride (after
(inlet to BFW tank)	Volume to	disposal (m3/d)	mixing with LP
	BFW tank		condensate)
	(m3/day)		(mg/l)
2	3700 (93%)	300	<7.0
3 (current	3000 (75%)	1000	<7.0
operation of WTP)			
4 (design of WTP)	2300 (58%)	1700	<7.0
5	1600 (40%)	2400	<7.0

- Based on the theoretical calculations, it is recommended that 75% condensate recycle to the Boiler Feed Water Tank considering the RO permeate chloride level of 3 ppm.
- This will result in a slightly higher chloride level of 7 ppm.

