

Electrodialysis for cEOR

Matthieu Jacob, Véronique Gauchou, Stéphane Nowé, Olivier-François Garnier, Philippe Cordelier

Michal Nemecek, David Tvrznik, Lukas Vaclavik

MEMBRANE INNOVATION CENTRE

• Introduction

What is EDR?

Desalination in cEOR?

EDR Challenges?

EDR in the context of Total O&G projects?

- Material & Methods
- Results at large scale (30 m²)
- Conclusions and perspectives

Introduction : What is EDR?

Advantages

Water does not permeate through the membrane \rightarrow Less fouling than RO

Current intensity directly related to desalination rate

PRODUCED WATER MIDDLE EAST 2019

<u>Potential Drawbacks</u> Resistance to temperature < 45°C

Require high footprint at high salinity (>10 g/L)

Not competitive for desalting at very low level

Non-ionic species are not treated

Introduction : Why EDR?

- In Chemical EOR, the lower the water salinity, the lower the polymer concentration required to reach a viscosity target

Water salinity	Polymer concentration to reach 10 cP at 55 C (measured at 7 s-1)	Polymer concentration reduction
Base case:6 g/L	1210 ppm	reference
Scenario 1: 1 g/L	545 ppm	-55%
Scenario 2: 0.4 g/l	363 ppm	-70%

- Less polymer = less OPEX (powder handling, less loading and unloading of large quantities of polymers, fewer trucks, less polymer in the back produced water)
- EDR seems the best compromise for desalting viscosified PW. Reverse Osmosis gets fouled by long polymer chains.

Evaporators consume a lot of energy and could get fouled in presence of polymer at high temperature.

Introduction : EDR in the context of a Total project 🙆

Introduction : EDR in the context of a Total project 🔘

Economics

EDR needs oil polishing treatment (Walnut shell filter, centrifugation or membranes)

Slightly higher CAPEX (~50M€) but major saving in terms of OPEX (>400 M€) when using EDR

Wat – R – Use [®] results

Introduction : EDR in the context of a Total project

Environment indicators

PRODUCED WATER MIDDLE EAST 2019

7

Introduction : EDR derisking program

Concept

PRODUCED WATER MIDDLE EAST 2019

8

Material & Methods

Pilot installed at Total PERL lab (Lacq, France)

Material & Methods

• EDR Module : 30 m2 area

Characteristics of the stack		
Effective membrane Surface	29,2 m2	
Active cell surface	0,767x0,382 m2	
Number of cell pairs (Diluate/ concentrate)	100	
Anion-exchange membrane	 Ralex AM-PES TR (X100) Thickness : 0,65mm Permselectivity >90% Temperature resistance : up to 70°C PH range : 0 -10 	
Cation-exchange membrane	 Ralex AM-PES TR (X103) Thickness : 0,65mm Permselectivity >90% Temperature resistance : up to 70°C PH range : 0 -10 	
Electrodes	Ti/Pt (X2)	

Material & Methods

Synthetic water

Salt	Mass concentration (g/L)
Na2SO4	0.019
NaHCO3	1.79
KCI	0.471
CaC12,2H2O	0.545
MgC12,6H2O	0.36
NaCl	2.956

Total salt concentration= 6.15 g/L.

+anti-scalant product at 20 ppm

+HPAM polymer at 300ppm/ 600 ppm

+crude oil at 20 ppm

+corrosion inhibitor at 50 ppm

PRODUCED WATER MIDDLE EAST 2019

 $T^{\circ}C = 60^{\circ}C$

Results : batch mode

 ✓ 23 g/L reached in concentrate at the end of batch 4.

Results : continuous mode (one stage)

Flowrate : 8,9 m3/h (D and C)

1,6 m3/h Electrolyte

Continuous mode

 $T = 60^{\circ}C$

Polarity reversal time = 23min

Test duration = 4 weeks

37% constant desalination rate on one stage

Results : continuous mode (one stage)

 \checkmark Slight decrease of performance probably due to fouling of the membrane during the long term test with

600 ppm HPAM and tenth of ppm of crude oil.

✓ It is acceptable since it can be recovered easily via CIP cleaning

Conclusions

- Industrial scale module (30 m2) works at 60°C with HPAM and crude oil
 - No/low membrane fouling at short term (<2-month test)
 - Desalination rate in continuous mode was constant at around 37% for one stage
- Still some issues with internal leakage at high temperature that are being fixed to enhance the reliability of the technology. Membrain (R&D subsidiary of MEGA) is working on the reliability of its stack at high temperature. The target is to have a fully reliable stack certified for high temperature (<70°C) for end of 2020.
- Economics are very attractive when dealing with HPAM polymer and relatively low salinity produced waters (5-10 g/L)
- Next step is to install a semi-industrial scale pilote (3 stages in serie) on a real viscosified produced water flow (continuous operation during at least 4 months)

Thank you for your attention

