

PRODUCED WATER MIDDLE EAST NDAY 12TH & MONDAY 13TH NOVEMBER 2017 ST. REGIS HOTEL ABU DHABI, UAE

GOLD SPONSOR

SILVER SPONSORS

BRONZE SPONSORS SIEMENS Ingenuity for life ARTES INGEGNERIA LANYARDS SPONSORS BESIX Concessions & Assets WI-FI OSMOFLO

NOTEBOOKS SPONSOR

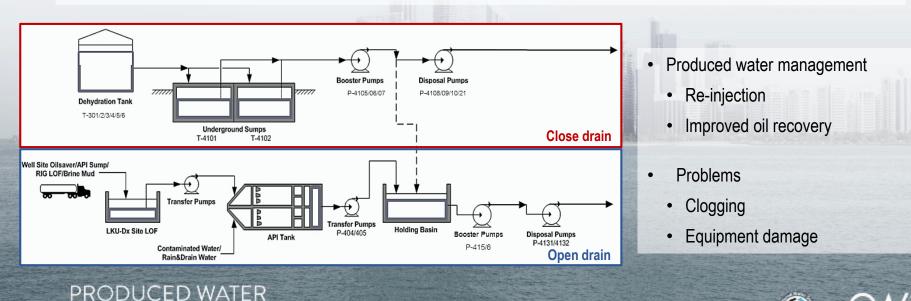
OMYA

ICEBREAKER DRINKS SPONSOR

Application of Flotation for Removing Fine Particles from Iron-Containing Produced Water

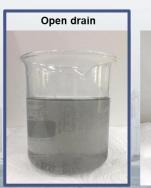
N. Chawaloesphonsiya, N. Thongtaluang, C. Tansakul, and P. Painmanakul

Faculty of Engineering, Chulalongkorn University Research Unit on Technology for Oil Spill and Contamination Management, Chulalongkorn University PTTEP PLC.



MDDLEEAST

Background


- Produced water characteristics depend on subsurface formation
- PW in onshore production is similar to groundwater properties
- Iron (soluble form, Fe²⁺) and sulfate (SO₄²⁻) are commonly found in groundwater from various areas in Thailand

CHULA SNGINEERING

Characteristics

Close drain

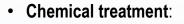
Parameter	Unit	Produce	Groundwater	
Falameter	Unit	Open drain	Close drain	Gioundwater
Turbidity	NTU	31.0 ± 2.58	13.0 ± 0.46	-
Conductivity	µS/cm	575	264	108 – 461
рН		7.16	7.65	6.4 - 8.8
Oil & Grease	mg/L	35.2 – 71.5	47.5 – 69.1	-
Suspended Solids	mg/L	130 ± 12	20 ± 7	-
Chloride (Cl ⁻)	mg/L	21,800	6,270	3 – 21
Sulfate	mg/L	15.0	12.0	-
Sulfide	mg/L	0.22	0.12	-
Iron (Fe)	mg/L	11.8	2.08	0.2 – 81
Manganese (Mn)	mg/L	2.50	0.30	-
Mercury (Hg)	mg/L	0.036	0.007	-
Arsenic (As)	mg/L	0.11	0.01	-

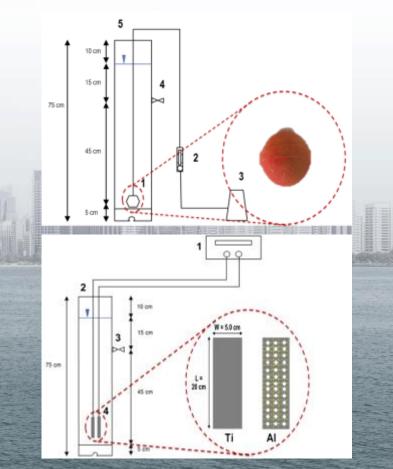
Characteristics

Open drain	Particle size (μm)	Number	Number fraction (%)	Volume fraction (%)
	<5	5,347,172	99.81	93.41
T	5 – 10	6,342	0.12	0.89
	10 – 15	1,541	0.03	0.73
Frank Link	15 – 20	777	0.02	0.87
	20 – 25	594	0.01	1.29
Reading and the second state	>25	745	0.01	2.81

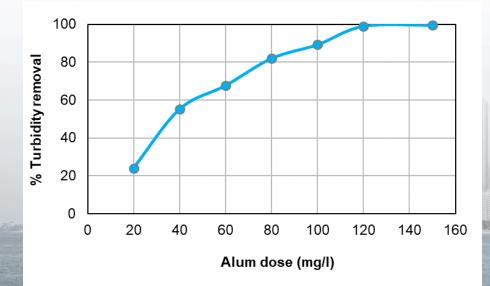
Technology/process for removing <5 µm particles and oil

Separation technology


	Process	Minimum size of particles removed (µm)	Advantages	Drawbacks
	Chemical treatment	1	Applicable for a large amount of wastewater with high suspended solid	High chemical costRequire proper sludge management
Publicanona	Gas flotation	3-5	No moving partsHigh efficiencyEasy operation	 Chemical required for particle aggregation Sensitive for fluctuation in inlet flow rate or concentration Most effective with smaller gas bubbles than droplet/particle sizes
COMPACT NUMBER OF STREET, STREET, ST. ST.	Electrocoagulation-flotation (ECF)	<1	 High efficiency without chemical required Produces less sludge volume that is easier for dewatering Capable in treatment of oil in dissolved or emulsion forms 	 Need to replace new electrode regularly due to electrode corrosion Electric power consumption



Methodology



- Aluminum sulfate (Al₂(SO₄)₃ or alum) in jar test experiment
- Flotation
 - Induced air flotation (IAF)
 - Induced air flotation with chemical (MIAF)
- Electrochemical process
 - Electroflotation (EF)
 - Electrocoagulation-flotation (ECF)

Chemical treatment

pH of 6.3–6.8 at all applied dosages of alum $(AI_2(SO_4)_3)$

Parameters	Unit	Initial	Treated		
рН	-	7.16	6.50		
Turbidity	NTU	31.80	1.12		
Total suspended solids	mg/L	134	41		
Oil and Grease	mg/L	69.7	13.5		
Alum dosage >120 mg/L					
96% turbidity removal					

- 70% SS removal
- 60% oil and grease removal

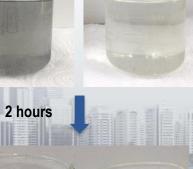
Chemical treatment

PRODUCED WATER MIDDLE EAST

Parameter	Unit	Initial	After mixing
рН	-	7.16	7.09
Turbidity	NTU	31.0 ± 2.58	233.3 ± 4.93
Suspended solid	mg/L	130 ± 12	171 ± 8

Changes in appearance and characteristics of produced water due to oxidation

 $\begin{array}{rcl} \mathsf{F}e^{2*} + \mathsf{O}_2 & \rightarrow & \mathsf{F}e^{3*} + \mathsf{O}_2 \\ 2\mathsf{O}_2^{\cdot} + 2\mathsf{H}^+ & \rightarrow & \mathsf{H}_2\mathsf{O}_2 + \mathsf{O}_2 \\ \mathsf{F}e^{2*} + \mathsf{H}_2\mathsf{O}_2 & \rightarrow & \mathsf{HO}^{\cdot} + \mathsf{HO}^{-} + \mathsf{F}e^{3+} \end{array}$

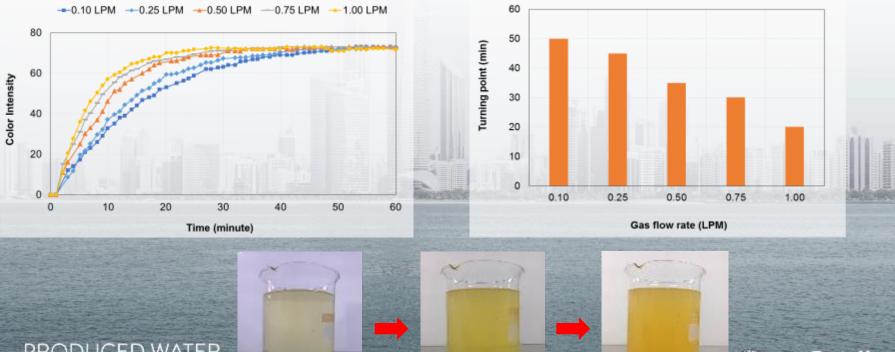

PRODUCED WATER MIDDLE EAST

Characteristics

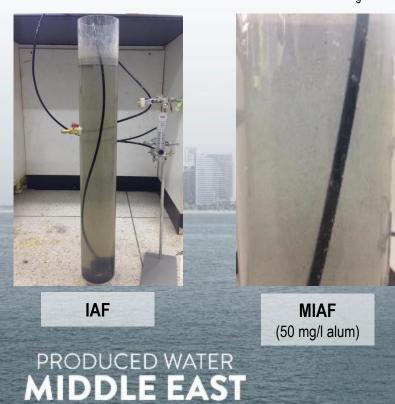
Parameter	Unit	Produce	Groundwater	
	Unit	Open drain	Close drain	Groundwater
Turbidity	NTU	31.0 ± 2.58	13.0 ± 0.46	-
Conductivity	µS/cm	575	264	108 – 461
рН		7.16	7.65	6.4 - 8.8
Oil & Grease	mg/L	35.2 – 71.5	47.5 – 69.1	-
Suspended Solids	mg/L	130 ± 12	20 ± 7	-
Chloride (Cl ⁻)	mg/L	21,800	6,270	3 – 21
Sulfate	mg/L	15.0	12.0	-
Sulfide	mg/L	0.22	0.12	-
Iron (Fe)	mg/L	11.8	2.08	0.2 – 81
Manganese (Mn)	mg/L	2.50	0.30	-
Mercury (Hg)	mg/L	0.036	0.007	-
Arsenic (As)	mg/L	0.11	0.01	-

Open drain

Close drain



Flotation


Color transition during flotation

Flotation

Produced water after 60-minute treatment with Q_{α} of 0.05 LPM

D	Efficiency (%)			
Processes	Suspended solids	<5 µm particles		
٩F	88	65		
1IAF	98	76		
1IAF	98			

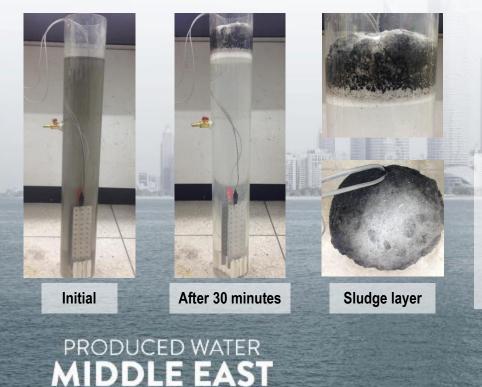
- Limited separation from difference in sizes between large bubbles and small particles
- Slight turbid and yellowish color after flotation
- · Ferrous oxidation affects the performance

Electroflotation (EF)

Produced water after 60-minute treatment by EF (2 cm electrode gap and 1.25 A electric current)

Anode (oxidation)	$2H_2O_{(I)} \rightarrow 4H^+_{(aq)} + O_{2(g)} + 4e^-$
Cathode (reduction)	$2H_2O_{(l)} + 2e^- \rightarrow H_{2(g)} + 2OH^{(aq)}$

- Yellow turbid water from ferrous oxidation
- With oxygen is continuous produced, iron rust is formed


 $\begin{array}{rcl} \mathsf{Fe}^{2+} + 2\mathsf{H}_2\mathsf{O} &\rightleftharpoons & \mathsf{Fe}(\mathsf{OH})_2 + 2\mathsf{H}^+ \\ \mathsf{Fe}^{3+} + 3\mathsf{H}_2\mathsf{O} &\rightleftharpoons & \mathsf{Fe}(\mathsf{OH})_3 + 3\mathsf{H}^+ \end{array}$

Electrocoagulation-Flotation (ECF)

Appearance of produced water after 30-minute treatment by ECF at electrode gap 2 cm and current 1.25 A

Anode (oxidation)	$\begin{array}{rcl} AI_{(s)} & \longrightarrow & AI^{3+}{}_{(aq)} \texttt{+} 3\texttt{e}^{-} \\ 2H_2O_{(l)} & \longrightarrow & 4H^{+}{}_{(aq)} \texttt{+} O_{2(g)} \texttt{+} 4\texttt{e}^{-} \end{array}$		
Cathode (reduction)	$2H_2O_{(l)} + 2e^- \rightarrow H_{2(g)} + 2OH^{(aq)}$		

- 99% removal efficiency of particles larger and smaller than 5 μm
- Clear and unchanged color water after treatment
- 2 layers of sludge on the surface of produced water
 - Thick black layer
 - > White layer

Efficiency comparison

Criteria	Jar test (150 mg/L alum)	IAF	MIAF (150 mg/L alum)	EF	ECF
Appearance	Slight turbid	Turbid	Turbid	Rusty	Slight turbid
>5 µm removal (%)	99	88	98	N/A	97
Retention time (min)	35	60	60	30	30
<5 µm removal (%)	99	65	76	N/A	99

Conclusion

- Effectively separation of both larger and smaller than 5 µm from produced water by chemical coagulation and ECF
- Oxidation of iron in produced water greatly affects treatment performance and process selection
- Handling of iron in produced water in necessary for preventing clogging from
 - Particle generation
 - Scaling (petroleum schmoo)
- Development of process (or combined processes) for dealing with iron-containing produced water is necessary

producedwaterevents.com

PRODUCED WATER MIDDLE EAST UNDAY 12TH & MONDAY 13TH NOVEMBER 201

ST. REGIS HOTEL ABU DHABI, UAE

PRODUCEDWATEREVENTS.COM/MIDDLE-EAST