PRODUCED WATER IN A WATER SCARCE WORLD

Emerging Models for Recycle and Reuse of Produced Water

> Devesh Sharma Managing Director – Aquatech International

Water Scarcity is an increasing trend

There is an increasing "thirst" for water in oil and gas exploration

Emerging Sustainability Needs

THIRST

Pure Water / Steam EOR

"Smart Water"

Hydraulic Fracturing

SUSTAINABILITY

Increasing Generation of Produced Water

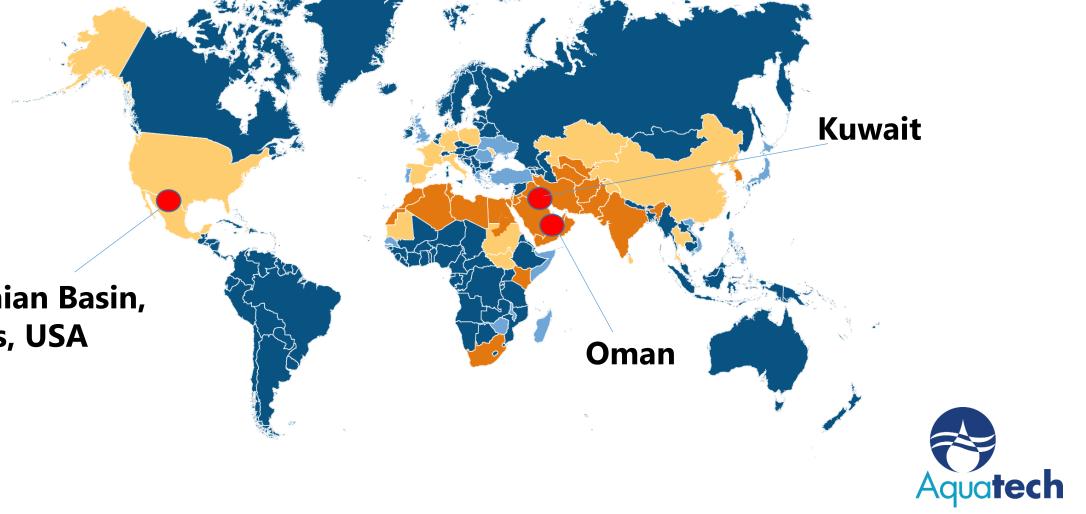
Limited Disposal Options

IRONY

Some of the most water scarce regions of the world need an increasing amount of water for oil production

OPPURTUNITY

Reuse Water and not be inhibited by water scarcity


Achieve Environmental Sustainability and limit pollution

WATER SCARCITY IN O&G HOTSPOTS

Permian Basin, Texas, USA

3 DIVERSE AND INTERESTING CASES IN PRODUCED WATER MANAGEMENT

Permain Basin

- Need: Water For Fracking
- Limitation: Source Water Scarcity / Disposal cost of Produced Water
- **Oppurtunity:** Reuse of PW and Flowback
- **Hurdles:** Decentralized Treatment

Oman

- Need: Steam for Enhanced Oil Recovery
- Limitation: Source Water only from freshwater aquifer of Produced Water
- Opportunity: Reuse of PW
- Hurdles: Schedule / Knowledge of formation PW

Kuwait

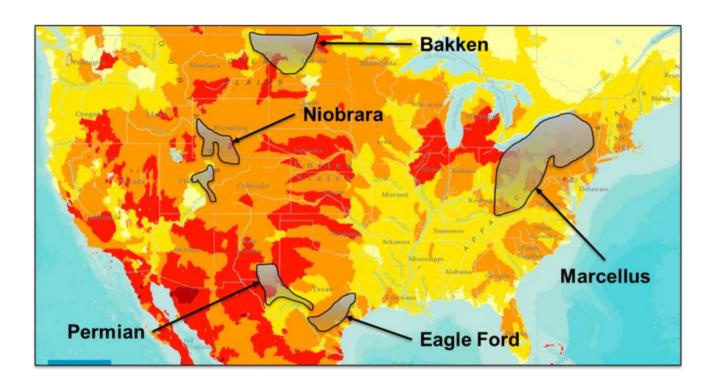
- Need: Steam for Enhanced Oil Recovery
- Limitation: Source Water only from desalination
- **Opportunity:** Reuse of sewage effluent
- Hurdles: None!

PERMIAN BASIN WATER MANAGEMENT TRENDS

Recycling programs have matured

Produced water volumes are increasing

Problem more pronounced in oil producing areas with high water to oil ratio


More produced water > 200,000 ppm TDS

Disposal well capacity is becoming limited

Seismic activity considerations are changing well development costs

More cost effective and sustainable disposal options are needed

Capex and operating costs need to reduce

MOBILE / MODULAR TREATMENT

Mobile Clarifier Equipment

Mobile Filter Press Equipment

Oil Removal / Pretreatment Equipment

Mobile Evaporator Equipment

Modular Movable Crystallizer Equipment

PERMIAN BASIN SOLUTION, START WITH STUDY

Client goals

Iron reduction

Maybe...hardness reduction

Determine optimal treatment level

Treatment costs

Compatibility with frac chemicals & cost

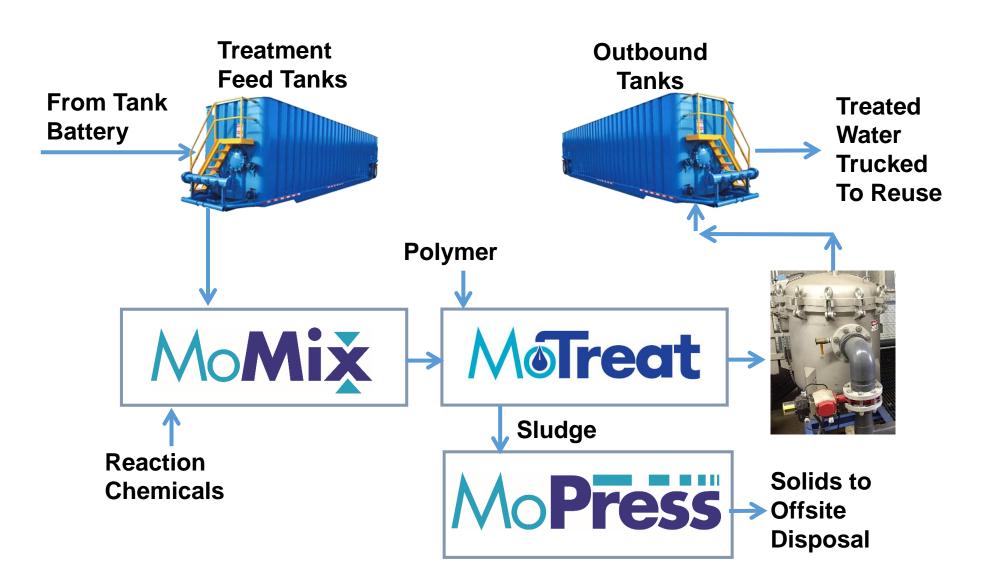
Determine treatment chemistry & chemical dosing levels

Establish safety protocols

Fear of ammonia

Level 1 – Operating pH ≈ 7.0 Hydrogen Peroxide (H₂O₂) for iron oxidation Caustic (NaOH) for pH

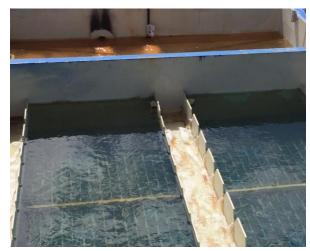
- Polymer (anionic) for coagulation & flocculation
- Hydrochloric acid (HCl) for treated water pH reduction

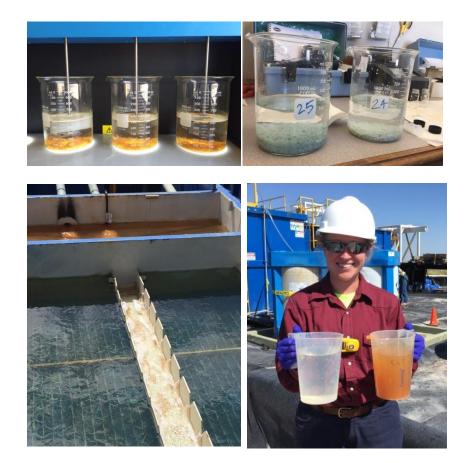

• Level 2 – Operating pH ≈ 9.5

- Caustic (NaOH) for pH and iron reduction
 Polymer (anionic) for coagulation &
- flocculation
- Hydrochloric acid (HCl) for treated water pH reduction

Level 3 – Operating pH ≈ 11 Sodium Carbonate (Na₂CO₃) for hardness

- reduction
- Caustic (NaOH) for pH
- Polymer (anionic) for coagulation & flocculation
- Hydrochloric acid (HCl) for treated water pH reduction


SIMPLIFIED PROCESS DIAGRAM



LAB DATA REAFFIRMATION

- Optimized chemical usage through testing reduced chemical usage by more than 50% from previous usage
- Lab test data replicated within +/- 2% on actual equipment operation for all 3 treatment levels
- Dosing sequence, dosing rates and retention times replicated very well
- Switching between varying feed sources was easy based on lab data generated for all treatments
- Lab data also helped prepare safety protocol to deal with Ammonia in Level 2 & Level 3 treatments

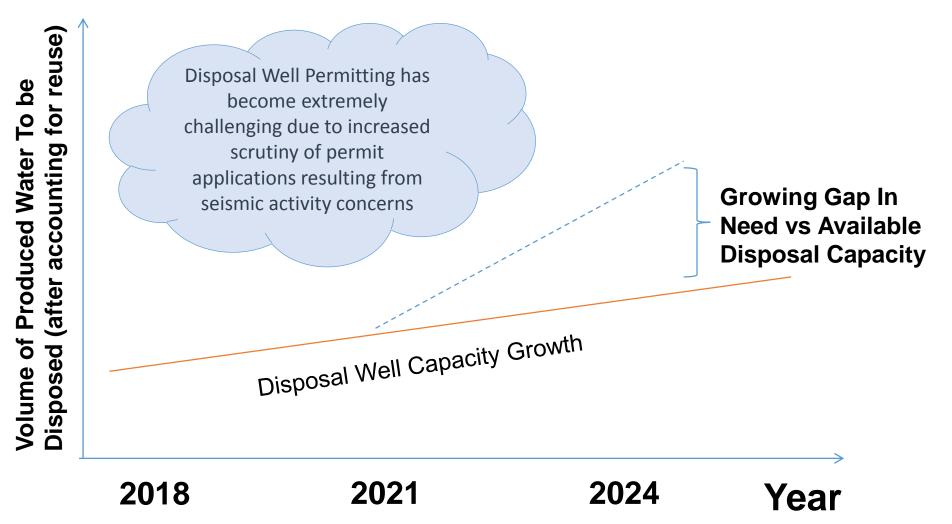
CASE STUDY – PERMIAN BASIN TANK BATTERY TREATMENT OF FLOWBACK & PRODUCED WATER FOR REUSE

Untreated Water

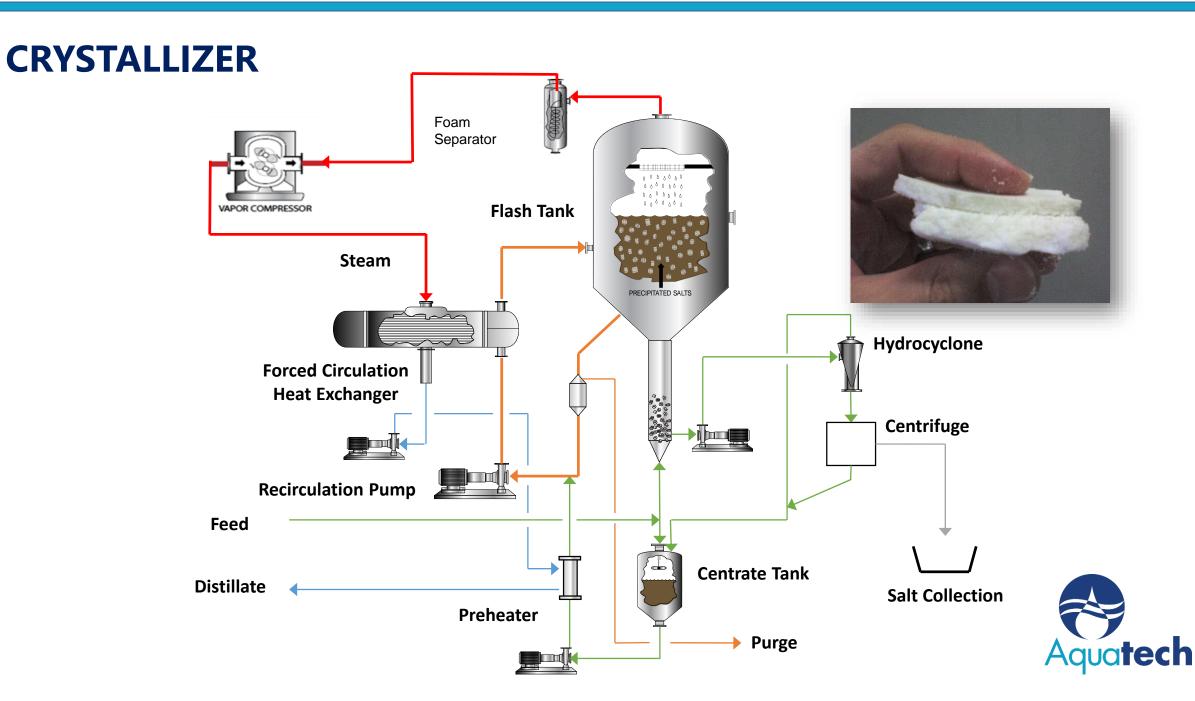
- Delaware Basin
- Red Hills & China Draw water
- Appearance varying between dark gray, light greenish, blackish depending on well location
- Oil ≈ 60 to 250 ppm
- Total Fe \approx 80 to 100 ppm
- Ferrous ≈ 50 to 80 ppm
- Hardness ≈ 50,000 ppm as CaCO₃
- Dissolved salts ≈ 100,000 ppm to 220,000 ppm
- Treated water from several wells connected to the Tank Battery

Achieved

- •Turbidity < 5 NTU
- •Total Iron (Fe) < 0.5 ppm
 - •Appearance clear


Disinfected

Wastewater


During Treatment
Treated

NEED FOR ALTERNATIVE TO DISPOSAL WELLS

This is a depiction of a emerging situation, and is based anecdotal information

ENHANCED OIL RECOVERY, OMAN

Development of Mukhaizna Oil Field

Aggressive timeline for production

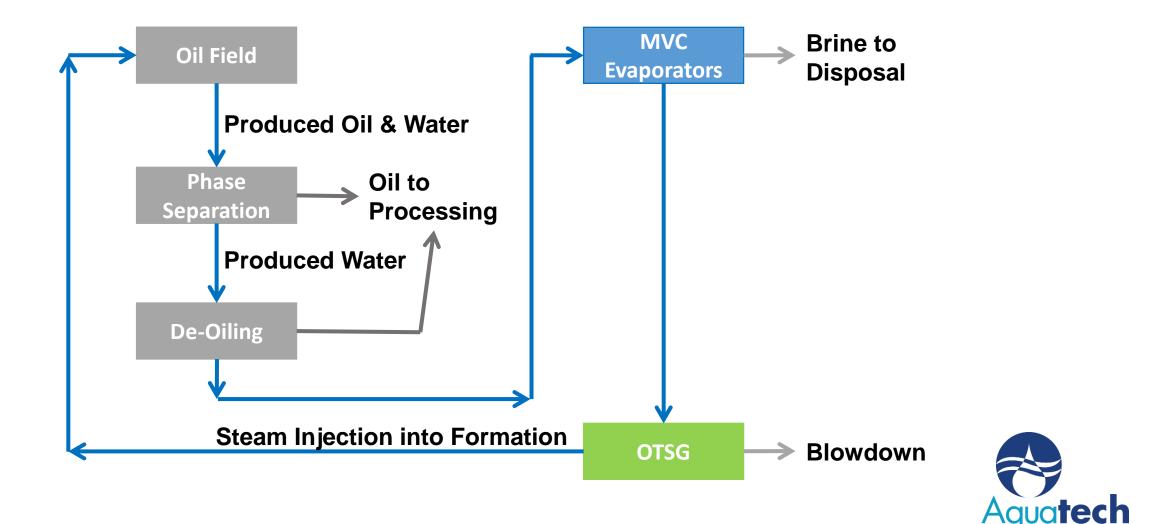
Not enough data on water quality

Robust solution required for recycling of produced water for OTSG's

O&G ENHANCED OIL RECOVERY – PRODUCED WATER CHARACTERISTICS

HIGHLY DEPENDENT ON THE GEOGRAPHICAL STRATA/FORMATION FROM WHERE IT IS ORIGINATED AND THE METHOD OF EXTRACTION USED.

Parameter	Typical Range - Offshore	Typical Range - Onshore
рН	6.0 - 9.0	5.0 - 9.0
Oil & Grease, mg/l	100 -> 10,000	10->10,000
TSS, mg/l	20 - 500	20 - 1000
TDS, mg/l	10,000 - 50,000	2000 – 250,000
Total Hardness, mg/l CaCO3	2000 - 8000	200 – 50,000
Chloride, mg/l	5000 - 30,000	1000 – 125,000
Sulfide, mg/l	0 - 500	0 - 500
Silica, mg/l	0 - 10	0 - 250
COD, mg/l	-	500 - 2500
Boron, Barium, Strontium, Iron, mg/l	0 – 100	0 – 10,000



O&G ENHANCED OIL RECOVERY – TREATED PRODUCED WATER QUALITY

Parameter	Offshore Disposal	Onshore (Deep Well Disposal)	Onshore (Irrigation/ Surface Water)	Onshore (Recycle as OTSG Feed Water)	Onshore (Recycle as Drum Boiler Feed Water) ¹
рН	6.0 - 9.0	6.0 - 9.0	6.0 – 9.0	6.0 – 9.0	8.8 – 9.6
O&G, mg/l	15 - 40	1 - 10	<10	1 - 10	0.2
TSS, mg/l (<5 μm)	-	< 1	< 30	< 1	Nil
TH, mg/l CaCO ₃	-	-	SAR < 10	0.5 - 1.0	< 0.3
BOD ₅ , mg/l	-	-	< 30	-	<0.2
DO, mg/l	-	< 0.01	2	< 0.007	<0.007
TDS, mg/l	-	-	500 – 2100	< 8,000	5 – 10
Silica, mg/l	-	-	-	< 50	0.2 – 0.4

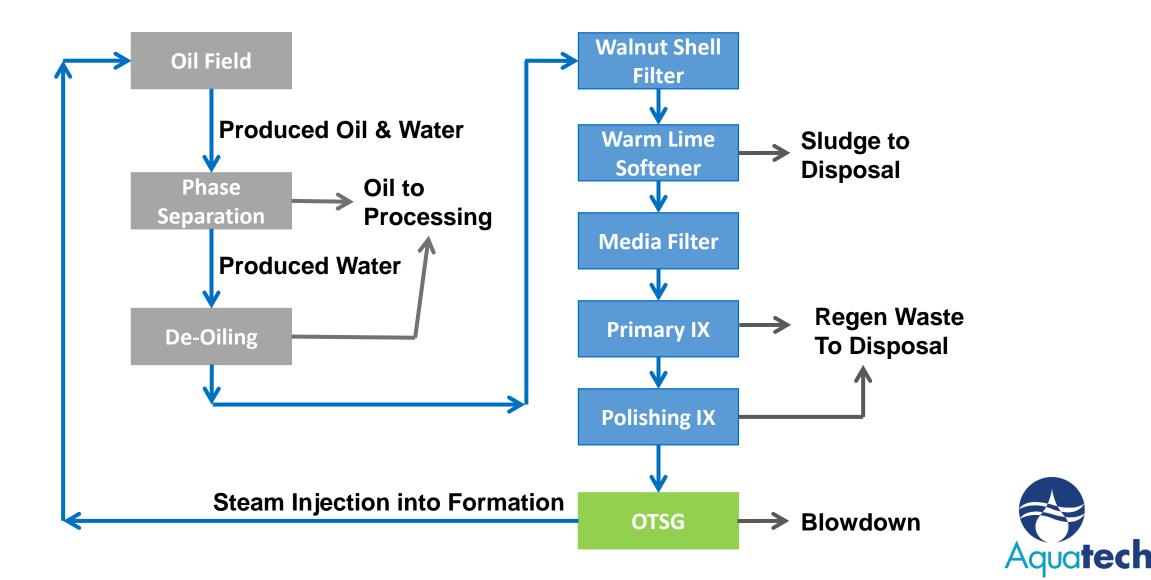
MUKHAIZNA – PROCESS SCHEME PHASE 1

O&G ENHANCED OIL RECOVERY

PHASE II

Water quality known

Really only need to treat to OTSG Level


Walnut Shell Filters, WLS, Afterfilters and IX ~400,000 BWPD

Onshore (Recycle as OTSG Feed Water)	Onshore (Recycle as Drum Boiler Feed Water) ¹
6.0 - 9.0	8.8 – 9.6
1 - 10	0.2
< 1	Nil
0.5 - 1.0	< 0.3
-	<0.2
< 0.007	<0.007
< 8,000	5-10
< 50	0.2 - 0.4

MUKHAIZNA – PROCESS SCHEME PHASE

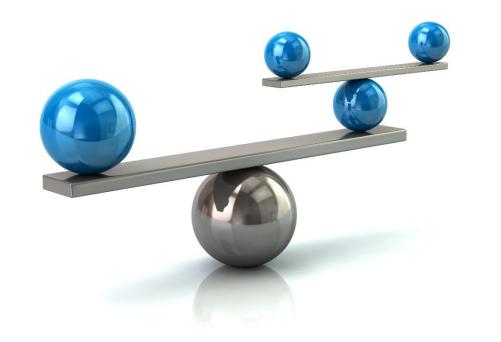
2

Phase 1

MVC Falling Film Evaporator 7 x 1,250 GPM (7 x 284 m³/hr)

- Phase 2,3,4
 Walnut Shell Filters, WLS, Afterfilters and IX
- Over a 350 MN USD Investment
- Over 800,000 BPD Development

MUKHAIZNA OIL FIELD


Great example of a holistic solution

High tech to Low Tech Balance

The right solution for the right time and project phase

One of the largest complex PW treatment and reuse projects in the world

Global Water Awards – 2009 Water Reuse Project of the Year

ENHANCED OIL RECOVERY, KUWAIT

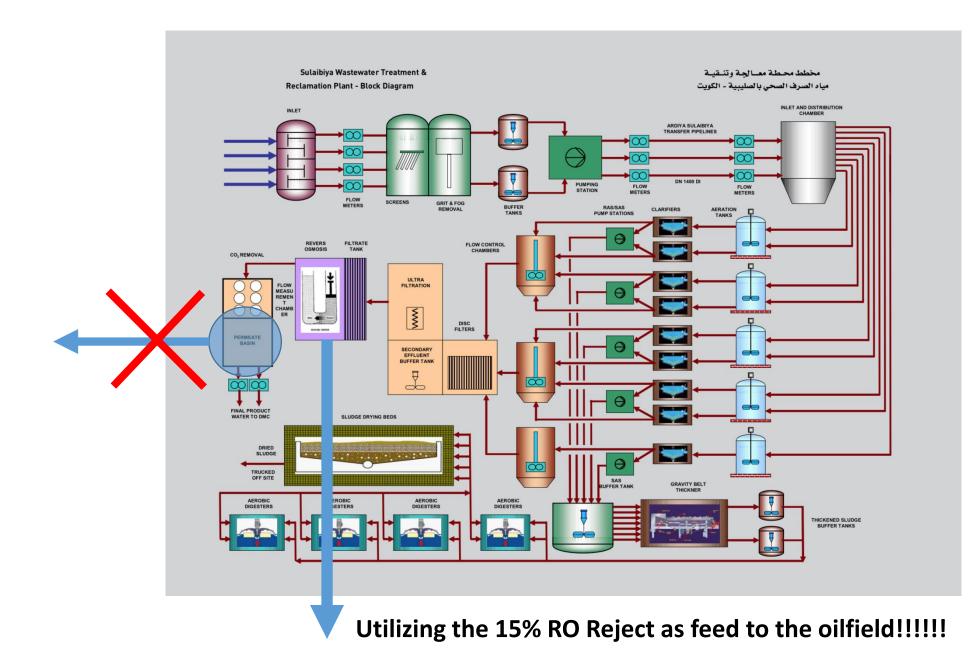
Development of Lower Fars Oil Field

First Phase requires 30,000 M3/Day of Water for OTSG

Desalinated Water?

SULABAYA WATER RECLAMATION PLANT

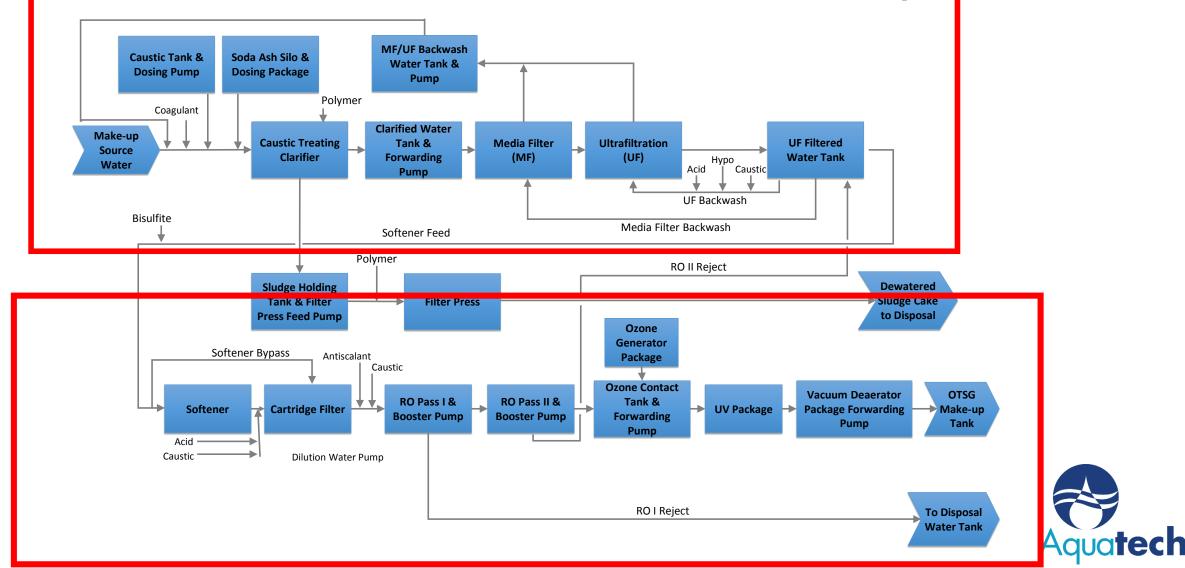
100 MGD


Groundbreaking project, at the time the largest in the world

Treated Sewage recycling 85%

Although meeting WHO drinking standards, water used mainly for agricultural and other non potable purposes

SOURCE WATER TREATMENT PACKAGE – DESIGN BASIS


Streams	Combined Feed Water
Flow, m3/h	1321
рН	6.5 – 8.4
Temperature, deg C	< 40
Ca, mg/l	784.5
Mg, mg/l	157.7
Total Hardness, mg/l CaCO3	2610
Total Alkalinity. mg/l CaCO3	~600
TSS, mg/l	75
COD, mg/l	386
NH4, mg/l	~74
PO4, mg/l	~100
TDS, mg/l	11,065

Make-up Water Design

Parameter	Value
рН @ 25 ºС	8.5 – 9.0
TSS, mg/l	<0.1
Total Hardness, mg/I CaCO3	< 0.5
TDS, mg/l	< 570
Chloride, mg/l	< 130
Silica, mg/l	< 0.01
DO, mg/l	< 0.1*
COD, mg/l	< 0.1

BLOCK FLOW DIAGRAM – SOURCE WATER TREATMENT, LOWER FARS HEAVY OIL DEVELOPMENT PROJECT. KOC

LOWER FARS ENHANCED OIL RECOVERY

Taking the "waste water from a waste water treatment plant" and converting it into high purity industrial water

Great demonstration of sustainability

In Conclusion

Recycle solutions can be big, small, "low tech"...."high tech"

Water treatment is "artful" application of "science"; same outcome can be achieved multiple ways New & amazing treatment are rare All treatment processes have limitations *"If its too good to be true....."*

> A holistic approach is key Customer specific needs Understand drivers

Delivery of a complete solution to support maximum yields

